Library MyTheory.A
Here's a Coqdoc comment.
From Coq Require Datatypes.
From Coq Require Import Ltac.
Require Import nat_example.
Require Import eq_example.
Section classical.
From Coq Require Import Ltac.
Require Import nat_example.
Require Import eq_example.
Section classical.
Clicking on Datatypes.nat below takes you to the definition of \(\mathbb{N}\) in the stdlib.
Clicking on nat_example.bool below takes you to the definition of nat_example.bool in another file in this library.
A basic theorem, in nice looking \(\LaTeX\): \(\forall b : \mathsf{bool},\lnot\lnot b = b\).
Theorem double_negation (b : bool) : eq (\(\lnot\) (\(\lnot\) b)) b.
Proof.
destruct b.
{ refine (refl _). }
{ refine (refl _). }
Qed.
End classical.
Cool.